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Abstract—Many dynamical processes can be represented as
directed attributed graphs or Petri nets where relationships
between various entities are explicitly expressed. Signaling net-
works modeled as Petri nets are one class of such graphical
models for representation. These networks encode how protein
abundances in specific compartments, interact to create new
protein products. Initially, proteins and rules governing their
interactions are curated from literature and then refined with
experimental data. Variation in these networks occurs at topolog-
ical structure, size, and weights associated on edges. Collectively,
these variations are quite significant for manual and interactive
analyses. Furthermore, as new information is added to these
networks, the emergence of new computational models becomes
more significant. From this perspective, a hierarchical spectral
decomposition method is proposed and applied for inferring
similarities and dissimilarities from an ensemble of graphs that
corresponds to signaling networks. The technique has been
implemented and tested on curated signaling networks that are
derived for breast cancer cell lines.

I. INTRODUCTION

Graphical models of complex systems such as biological
processes enable semantic representation of complex pro-
cesses. The advent of high throughput experimental processes
and structured curation of knowledge has yielded a more
complete picture of these systems. One class of such processes
is signaling networks that characterize protein interactions
and their byproducts. Modeling of signaling networks can
occur at different scales of abstraction. At one of end of
spectrum, continuous modeling represents dynamic biochem-
ical interactions. At the other end of the spectrum, modeling
can be purely statistical; this is amenable for high through-
put experimental design. While detailed continuous modeling
enables mechanistic exploration, higher level modeling pro-
vides the basis for constructing relationships through statistical
correlation. An intermediate step between these end points
are the Boolean, deterministic, and Petri net representations.
These representations not only provide a simplified view,
but also place a potential bound and enforce stability on a
more complex model, e.g., ordinary differential equations. The
emerging notion is not an integrated and aggregate model,
which embodies all cellular functions, but multiscale models
that encapsulate different aspects of the model systems at
different levels of abstraction. Signaling networks are complex
and may contain up to several hundred proteins. Potential
variations in a network originate from different model system
(e.g., different cell lines), changes in microenvironment, and
treatment regime. It is therefore desirable to compare and
contrast these graphical structures for similarity, as well as
dissimilarities, for large scale databases. While the proposed

method and application have been evaluated on signaling
networks derived from Pathway logic [16], this technique is
extensible to any kind of database of graph structures for
post analysis. The primary contribution of this paper is a
methodology for hierarchical decomposition of an ensemble
of graphs. The actual decomposition is through recursive
application of spectral analysis [1], [2], [15] on a directed
graph and derived subgraphs. The rationale for hierarchical
decomposition originates from the fact that graphical structures
are weighted and aggregation of an ensemble of graphs leads
to preferred topological motifs with similar weighting. This
similarity in weighting can be multiscale and hierarchical; thus,
multiscale recovery of these motifs contribute to improved
visualization, partitioning, and understanding of an ensemble
of networks. Two examples of signaling network for two
mammalian cell lines are shown in Figure 1.

Section II provides a short summary of the background
biology. Section III reviews spectral analysis within the con-
text of graph representation. Section IV outlines the details
of approach, examples, and concluding remarks. Section V
concludes the paper.

II. BIOLOGICAL DRIVER

In cancer cells, the pathways that control the cell cycle,
cell growth, apoptosis (cell death), and cell adhesion become
deregulated through mutations [7]. Our goal is to understand
the cellular signaling pathways associated with breast cancer.
To that end, we have modeled the signaling pathways in a
panel of 51 breast cancer cell lines. These cell lines capture
both rare mutations, as well as those that frequently occur in
breast tumors. One important feature of both breast tumors
and cell lines is the site of origin. Tumors and cell lines that
originate from basal epithelium tend to be much more invasive
than those that originate from luminal epithelium. Furthermore,
these two groups show distinct genetic patterns [12]. We were
interested in the cellular signaling pathways that distinguish
the basal and luminal cell lines.

III. GRAPH PARTITIONING

Graph partitioning is concerned with the grouping of the
vertices of a connected graph into subsets so as to minimize
the total cut weight, as shown in Figure 2. One intent of graph
decomposition is to simplify the graph matching problems into
simpler subgraph matching problems. For example, it has been
shown that error-tolerant graph matching [10] can be simplified
using decomposition methods and reduced to indexing. Within
the context of this paper, spectral analysis enables stable
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Fig. 1. A graphical representation of the signaling networks generated with
Pathway Logic. In each graph, the colored circles represent proteins. The white
boxes represent rules, or signaling between the proteins. Two cell types are
shown: (a) MCF7, a basal cell line and (b) SKBR3, a luminal cell line.

decomposition of graphs for further analysis by global struc-
tural properties of eigenvectors corresponding to the Laplacian
matrix. Let qi = {1,−1} be a membership function for the
assignment of each node i for a two-way decomposition. The
optimum cut is given by Jmin = 1

4
Σi,jwij [qi−qj ]

2, which can
be rewritten as 1

2
qT (D −W )q. The solution to Jmin is given

by second-smallest eigenvector of (D − W ). Formally, for a
weighted graph G = (V,E,Ω,W ), where V is a set of nodes,
E is the set of arcs, Ω = Vi, i ∈ V , and W = wij , ij ∈ E.
The Laplacian matrix is given by

Lij(G) =







∑

ik∈E wik if i = j

−wij if i 6= j and (i, j) ∈ E

0 otherwise







(1)

The second smallest eigenvector of the Laplacian is also
known as the Fiedler vector with many well-known applica-
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Fig. 2. Decomposition of an undirected graph into two subgraphs while
maintaining balanced graph size.

tions and properties. The major applications of the Laplace
eigenvalues are the max-cut problem, semidefinite program-
ming, and steady-state random walks on Markov chains [11].
Furthermore, the interlacing properties of the eigenvalues have
been shown to be related with the chromatic number (minimum
number of colors such that no two adjacent vertices share the
same color), and the diameter and bandwidth of graphs [6].
In addition, the Fiedler vector has been used for recursive
partitioning of the image [15] for segmentation, and placing
nodes of the graph in a serial order for visualization [4]. For the
purpose of image partitioning, grouping is defined as a case of
graph partitioning, where partitioning is normalized to inhibit
formation of small sets of isolated nodes. An elegant objective
function is derived in the form of a Rayleigh quotient, which
has a standardized solution as the eigenvector corresponding
to the second smallest eigenvalue.

One approach for graph partitioning is to construct non-
overlapping super-cliques using the node order by the Fiedler
vector [13], [14]. A superclique is defined as a center node
and all of its immediate neighboring nodes. A preliminary
metric (distance measure) can be defined to test the method
and for locating non-overlapping super-cliques, e.g., a center
node that is not on the perimeter and whose metric exceeds
its neighbors. The resulting super-cliques are relatively stable
subgraphs, which can be matched to the original graph using
discrete relaxation and edit distance algorithms [18].

A. Graph clustering

Despite recent progress in measuring similarities between
graphs and performing inexact graph-matching, clustering on
graphs remains an open and challenging problem. Besides
lack of ordering, graphs are often noisy (e.g., contain different
numbers of nodes and edges), and, as a result, standard pattern
recognition techniques are inadequate (e.g., variable vector
size). One approach is to measure pairwise similarities of the
graphs and cluster them by searching for sets of graphs with
strong mutual affinity [8]. Another approach to overcoming
this problem is through spectral representation of the graphs



and representing the structures of the graphs as vectors of
“fixed” length. Each component of a vector represents a differ-
ent spectral mode of the graph adjacency matrix. The spectral
graph theory suggests a number of unary and binary features
[9]. Examples of unary features are (1) leading eigenvalues, (2)
eigenmode volume, (3) eigenmode perimeter, and (4) derived
features such as Cheeger constants. Binary features corre-
spond to pairwise attributes of the eigenmodes. Examples are
the “mode association matrix”, which projects the adjacency
matrix onto the basis spanned by the eigenvectors, and the
“intermode distances,” which is the path associated with the
minimum number of edges, between the most significant nodes
associated with each eigenmode of the adjacency matrix. These
modes are then embedded in a pattern space such as principal
component analysis (PCA) or independent component analysis
(ICA).

IV. APPROACH

Review of spectral methods, as applied to graphs, indicates
that previous efforts have focused on either decomposition
of a single graph or feature extraction from an ensemble of
graphs for subsequent clustering. The focus of this paper is on
a distinct biological application and recursive decomposition
of an ensemble of graphs through spectral analysis. The
main advantages of spectral method are (1) a more stable
decomposition, (2) reduction in the number of free parameters,
and (3) recursive application of this technique for coarse-to-
fine decomposition. The first step of the process is to construct
a composite representation from within and between labeled
graphs for similarities and dissimilarities, respectively. This
is followed by iterative decomposition of the Laplacian of
the composite graph for revealing coarse-to-fine motifs from
the signaling network. Although the results are limited to the
Petri net derived from Pathway Logic, as shown in Figure
1, the technique can be extended to other forms of graphical
structures, such as workflow and dynamical processes.

A. Network representation

The network models were curated from literature and then
refined with experimental data. Signaling motifs have two
node types, corresponding to (1) protein abundance and (2)
rules. Internally, a typical representation uses Systems Biology
Markup Language as follows:

<sbml level="2" version="1"
xmlns="http://www.sbml.org/sbml/level2">

<model id="myGraph"
name="myGraph" >

<listOfCompartments>
<compartment id="CLc" name="Cell cytosol" />
</listOfCompartments>
<listOfSpecies>

<species id="o109" name="Pkcz-act-CLi"
compartment="CLi" initialConcentration="0"/>
<species id="o124" name="(Raf1:Rkip)-CLc"
compartment="CLc" initialConcentration="1"/>
<species id="o125" name="Raf1-CLc"
compartment="CLc" initialConcentration="1"/>
<species id="o126" name="Rkip-phos-CLc"
compartment="CLc" initialConcentration="0"/>

Affinity type Ei = Ej Ei × Ej = 0 Ei × Ej 6= 0

Similarity Max value 0
∑

Ei

Dissimilarity 0 Max value
√

|E2

i
− E

2

j
|

TABLE I
CONSTRUCTION OF THE AFFINITY MATRIX FOR SIMILARITY OR

DISSIMILARITY ANALYSIS: Ei AND Ej INDICATE THE WEIGHTED EDGE

FROM INITIAL COMPOSITION OF THE GRAPH ENSEMBLE.

</listOfSpecies>

<reaction id="t127" name="230.Rkip.by.aPkc">
<listOfReactants>

<speciesReference species="o124"/>
</listOfReactants>
<listOfProducts>

<speciesReference species="o125"/>
<speciesReference species="o126"/>

</listOfProducts>
<listOfModifiers>

<modifierSpeciesReference species="o109"/>
</listOfModifiers>

</reaction>
</model> </sbml>

Where Reactants and Products are input and output, re-
spectively. Modifiers refer to protein or other components that
must be present for the reaction to take place, and it remains
unchanged during the reaction. Each signaling node, in every
graph, has a distinct ID; thus, it is invariant to motif discovery.
For similarity analysis, a composite graph is constructed by
aggregating self-similar edges (e.g., edges with identical nodes
between multiple graphs). This composite graph is computed
by Gc =

∑

i Gi and then normalized for the number of
graphs in the database. For dissimilarity analysis, the system
is designed to compute differences between two groups of
graphical networks. First the composite representation, within
each group, is computed through aggregation as before. Next
the difference between two composite representations is com-
puted. This difference corresponds to the differences among
self-similar edges, e.g., Gc = |

∑

i G
Group A
i −

∑

j G
Group B
j |.

The corresponding affinity matrix has a symmetrical distance
property (e.g., identical distance measure when computed
from Gi to Gj and vice versa). These aggregation operators
for edges in the composite graphs are shown in Table 1.
These operators generate weight matrices that are positive
and symmetric. Furthermore, a computed composite graph is
often disjoint; thus, its connected components are identified.
A numerical example of constructing a composite graph that
represent dissimilarities between two graphs are shown in
Figure 3.

Intuitively, such a representation constructs a weighted
graph for capturing corresponding affinities from a set of
graphs. The affinity matrix is symmetric with each element
encoding a weighted edge between corresponding nodes.
Presently, these composite affinity matrices are of the order
of 900 nodes.
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Fig. 3. A numerical example for constructing a composite graph correspond-
ing to dissimilarities: (a) graph A; (b) Graph B; and (c) computed composite
graph.

B. Decomposition algorithm

The above representation leads to the realization that decom-
position can be hierarchical, due to the weighted representation
of the graph, e.g., higher weights on a set of edges implies
stronger grouping. The spectral decomposition is as follows:

1) Compute connected components of the composite graph,
Gc,

2) For each connected component compute in Gc do

a) Compute Laplacian of the connected component
and its corresponding Fiedler vector,

b) Partition the composite graph into two subgraphs,
based on the sign of each element of Fiedler
eigenvector,

c) Repeat above 2 steps until each element of the
Fiedler vector has the same sign.

C. Model generation

The Pathway Logic framework was used to model the
signaling networks for the panel of 51 breast cancer cell lines,
26 basal and 25 luminal [5], [16]. The construction of a
Pathway Logic model requires two key elements: a set of rules
and an initial state. The rules represent all the biochemical
transitions that can occur. Presently, the model has a set of

880 rules that detail cellular signaling along multiple pathways,
including the raf-mek-erk pathway, PI3K cascade, and ErbB-
related signaling [3], [17], [19]. The initial state specifies all
of the molecular components present in the cell, as well as the
cellular compartment in which they are located. A Petri net for
each cell line has been generated, and data about protein func-
tion were acquired from the SOURCE database (http://genome-
www5.stanford.edu/cgi-bin/source/sourceResult).

D. Initialization of Petri net

For the similarity analysis, protein abundance data was used
to determine the presence or absence of 28 proteins known to
be critically involved in cancer cell signaling. For dissimilarity
analysis, mRNA expression data was analyzed to determine
the initial state for each cell line. Briefly, for each gene, the
distribution of mRNA expression values across the panel of
cell lines was analyzed. These expression values were grouped
using PAM clustering technique. Genes best represented by 2
clusters were considered present in some cell lines and absent
in others. Genes that yielded a single cluster were considered
present in all cell lines. With this method, 39 out of 640
components in the model were present in the initial state
of some cell lines and absent in others; the remainder were
present in all cell lines.

E. Experimental results

A number of experiments on signaling networks for sim-
ilarity and dissimilarity analysis were performed, and in all
cases spectral analysis has isolated significant motifs with
meaningful biological implications and validated by domain
expert. One experiment included 25 Petri nets, which were
generated by Pathway Logic, and a database of rules were
curated to describe the interactions of proteins. These Petri
nets represent individual breast cancer cell lines, and for each
cell line, Western blot data were used to determine the presence
or absence of 28 proteins known to be critically involved in
cancer cell signaling. These breast cancer cell lines can be
classified by their site of origin as being basal or luminal,
where the label serves one of the bases of analysis.

For similarity analysis, a composite graph was constructed
as described earlier, and spectral clustering was performed for
each connected component. Figure 4 shows the dendrogram
that corresponds to one of these connected components. At
each node of the dendrogram, two “child” motifs are generated
from the “parent” motif. Figure 5 shows an example of the
motif structure at a specific node along the dendrogram. The
corresponding left and right child decompositions are shown
in Figure 6. The two child graphs contain proteins involved
in two distinct cellular processes. The left child motif, shown
in Figure 6(a), contains many proteins involved in cell surface
signaling. Integrins (Ia5Ib1 and IavIb3) are the most prominent
features in this graph. Integrins are heterodimeric integral
membrane proteins composed of an alpha and beta chain.
These proteins are involved in cell adhesion and cell-surface
mediated signaling. Both of these processes are extremely
important for the maintenance of cell integrity. These processes



Fig. 4. Hierarchical decomposition of one connected component of the com-
posite graph using recursive spectral bisection. Each node in the dendrogram
corresponds to a directed graph.

Fig. 5. A graphical motif at two levels below the root node of Figure 4.

are frequently disrupted in cancer. The proteins in the right
child motif, shown in Figure 6(b), are involved in the two-
step process used to generate new proteins: transcription and
translation. Smad2 is a transcriptional regulator, while Eef2k
is a regulator of translation. Smad proteins are signal trans-
ducers and transcriptional modulators that mediate multiple
signaling pathways. It mediates the signal of the transform-
ing growth factor (TGFβ), and therefore regulates multiple
cellular processes, including cell proliferation, apoptosis, and
differentiation. Eef2k links activation of cell surface receptors
to cell division, and is involved in the regulation of translation
(protein synthesis). This example demonstrates the utility
of spectral decomposition for isolating signaling motifs that
represent unique cellular functions.

For dissimilarity analysis, the technique revealed many
signaling motifs in our model networks, where some are more
frequent than others. This frequency is estimated by the weight

(a)

(b)

Fig. 6. Decomposition of Figure 5 into left and right child motifs.

of affinity matrix from the composite graph. Here we describe
the biological basis for a set of child graphs that are validated
by domain expertise. Figure 7 shows two child graphs at
the fifth level of a dendrogram computed for dissimilarity
analysis. Both of these motifs occur more frequently in luminal
than basal cell lines. The left child of Figure 7(a) contains
signaling related to cell structure and motility. Specifically,
there is a small network centered on the phosphorylated
form of beta-catenin (Bcat-Yphos-CLc). Beta-catenin is an
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Fig. 7. Two child motifs of a dissimilarity analysis corresponding to luminal
and epithelial cells.

adherens junction protein involved in the regulation of cell
adhesion. Interestingly, activating mutations in beta-catenin
have oncogenic activity that may result in tumor development.
The other subnetwork in this graph involves rac1, elmo1, and
dock1. These proteins are involved in regulating changes in cell
shape required for cell motility and engulfment of apoptotic
cells. All together, the proteins in this signaling motif are
important for cellular integrity. The right child graph 7(b)
shows a small network involving wasf1 (Wave1-act-CLc) and
nck1. These proteins play a role in signal transduction from
small GTPases and receptor tyrosine kinases to downstream
targets that include ras. Ras is an oncogene, and mutations in
signaling associated with ras have been implicated in many
types of cancers. The examination of these two signaling
motifs indicate validation of this method for identifying and
understanding key regions of a large signaling network.

V. CONCLUSION

A system has been developed and implemented for iterative
decomposition of an ensemble of graphs for similarity or
dissimilarity analysis using spectral graph theory. Operators
are defined to compute corresponding affinity matrices in both
cases. The spectral methods enable a more stable model for
decomposition with a reduced number of free parameters. The
proposed technique has been applied to signaling networks to
reveal coarse-to-fine motifs of significance that either advocate
preferred similarities or dissimilarities. These motifs were
compared and validated for their biological affinity. Future
extensions of this method will focus on improved design of
affinity matrices that allow spatio-temporal analysis with the
same objectives.
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